Frameworks for Quantum Algorithms
نویسنده
چکیده
Due to the difficulty of constructing new quantum algorithms, frameworks that facilitate this construction are of great importance in quantum computing. These frameworks reduce the problem of coming up with a quantum algorithm to that of constructing some combinatorial object that is often much simpler to reason about. The implementation and analysis of an algorithm for the specified problem follow from the properties of this object. A number of such frameworks have been extremely successful in leading to the development of numerous quantum algorithms for a variety of problems. In this thesis, we build on two of these frameworks, the quantum walk search framework, and the span program framework, extending their algorithmic potential. The quantum walk search framework gives a generic quantum analogue to a specific type of classical algorithm based on random walks. If one can construct a classical algorithm of this form, a corresponding quantum algorithm with better complexity immediately follows. In this framework, a generic algorithm is constructed from several subroutines for which implementations must be given for each application. One of these subroutines, a checking subroutine, is run many times throughout the algorithm. This subroutine may be implemented by any quantum algorithm that satisfies the required functionality, including another quantum walk algorithm. By making a slight modification to the quantum walk framework, we can show how to nest a quantum walk algorithm in the checking subroutine of another quantum walk algorithm in a way that gives better complexity than the naive nesting. This modification allows us to reproduce a number of upper bounds previously obtained in another framework, the learning graph framework, including upper bounds for triangle finding, and more generally, subgraph finding for constantsized subgraphs. Porting these upper bounds over to the setting of quantum walks is desirable because the algorithms achieved in the quantum walk search framework are much more explicit than those of the learning graph framework, making them easier to work with, modify, and build on, as needed. Our efficient nested checking idea has already been used to come up with new quantum algorithms for finding sub-hypergraphs. Another subroutine that is called repeatedly by the generic quantum walk search algorithm is the update subroutine. It was not clear how to use a quantum walk algorithm to perform this step, but by making another slight modification to the quantum walk search framework, we are able to show how to nest a quantum walk in the update step of another quantum walk in an efficient way. Our technique for doing this is a special case of a technique that allows the update to be implemented with garbage — i.e., some unwanted data in an auxiliary register, entangled with the desired state. This technique may have other applications. Using the nested update technique, we are able to improve the best known upper bounds on the time complexity of k-distinctness. Previously the best known upper bound on the time complexity was nk/(k+1), due to Ambainis. Belovs had recently improved the query complexity of k-distinctness to o(n3/4) for all k, but since this upper bound was obtained in a framework called
منابع مشابه
Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits
Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...
متن کاملEfficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits
Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...
متن کاملBQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems
Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...
متن کاملQuantum Computation Beyond the Circuit Model
The quantum circuit model is the most widely used model of quantum computation. It provides both a framework for formulating quantum algorithms and an architecture for the physical construction of quantum computers. However, several other models of quantum computation exist which provide useful alternative frameworks for both discovering new quantum algorithms and devising new physical implemen...
متن کاملQuantum Computation Beyond the Circuit Model by Stephen Paul
The quantum circuit model is the most widely used model of quantum computation. It provides both a framework for formulating quantum algorithms and an architecture for the physical construction of quantum computers. However, several other models of quantum computation exist which provide useful alternative frameworks for both discovering new quantum algorithms and devising new physical implemen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014